
Chapter 10

Pathway analysis

In many genomic data analysis, the output is a set of genes associated
with disease (e.g. DE gene analysis from microarray data) or a set of
co-expressed genes (e.g. from microarray cluster analysis). Although
such candidate marker detectioin is useful to narrow down targets for
further investigations, the long list of hundreds of genes may contain
little unifying biological theme. This leads to difficulty in interpretation
and further hypothesis generation. The gene set analysis (a.k.a. pathway
analysis) has been pursued for functional annotation of a candidate gene
list or an ordered gene result (e.g. ordered by p-values or q-values).

10.1 Pathway database

Many pathway databases are publicly available (Gene Ontology, KEGG,
Biocarta, Reactome, MSigDB, Pathway Interaction Database etc). Most
of them are in the form of gene sets (i.e. each pathway is represented
as a set of genes). Some of them have gene-gene interaction network
structure from currated literature information. For example, KEGG
(http://www.genome.jp/kegg/) and PID (http://pid.nci.nih.gov/) con-
tain hundreds of carefully constructed pathway networks that reflect ac-
cumulated biological knowledge in the field (see Figure 10.1). Embedding
such complicated network structure in the analysis is often difficult. In
the pathway analysis we describe in this chapter, we only consider path-
ways as gene sets.
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Figure 10.1: Gene-gene interaction network structure of “Cell Cycle”
from KEGG.

10.2 Discrete approach: Fisher’s exact test

The earliest approach used for pathway analysis is by testing a 2×2 con-
tingency table using either Chi-square test or Fisher’s exact test. Con-
sider an expression data set with G genes and S samples, and a pathway
of P genes. Suppose analysis of the data set generates a candidate gene
list of N genes. Of the N genes, m belongs to the pathways and N −m
does not belong to the pathway. A 2× 2 table is generated below.

in pathway not in pathway total
in candidate gene list m N-m N

not in candidate gene list P-m G-N-P+m G-N
total P G-P G

Under the null hypothesis, the event of a gene belonging to the path-
way and the event it belonging to the candidate gene list are independent
(i.e. the candidate gene list is not associated with the pathway). One may
perform chi-squared test or Fisher’s exact test for such a hypothesis test-
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ing. We skip the introduction of these two tests here but describe their
pros and cons. (?? add details of the two tests later??) The chi-squared
test is easy to calculate but the null distribution is derived approximately.
The test is accurate only if the sizes of the pahtwy and candidate gene list
are large enough. On the other hand, Fisher’s exact test is an exact test
under any scenario. Its inference and p-values calculation are, however,
slow for large gene sets.

Although the discrete approache described above is useful, it has a
few assumptioins and drawbacks. Firstly, it assumes that a candidate
gene list is given. Such a gene list is often derived from differentially
expressed (DE) gene analysis and a false discovery rate threshold is im-
posed to generate a candidate gene list. As a result, the selection of
threshold is arbitrary and can impact the pathway analysis result. An
extreme situation can happen when all genes in the given pathway have
moderate p-values (e.g. p=0.05). In this situation, no gene in the path-
way can be selected to the candidate gene list after multiple comparison
but the pathway is apparently biologically meaningful. Such an arbitrary
threshold is relaxed by the continuous approaches introduced in the next
paragraph.

10.3 Continuous approach: Kolmogorov−Smirnov
test

Continuous approaches differ from discrete approaches in that we do not
need arbitrary threshold to produce a candidate gene list for pathway
analysis. Instead, the gene order and maybe the magnitude of DE ev-
idence of the genes in the entire genome are considered. We use the
famous KolmogorovSmirnov test (KS-test) as an example in this section.

Consider an expression data set with G genes and S samples, and a
pathway P with P genes. Assume an ordered gene list L = {g1, · · · , gG}
according to DE evidence is available (e.g. ordered by p-values) and the
ordered association scores are R = {r1, · · · , rG} (e.g. p-values). Denote
by the gene sets inside the pathway and outside the pathways as Lhit =
{gi, gi ∈ P} and Lmiss = {gi, gi /∈ P}, and assume the corresponding
association scores are Rhit = {ri, ri ∈ P} and Rmiss = {ri, ri /∈ P}.
Suppose the empirical distributions of Rhit and Rmiss are denoted as
F̂hit(x) and F̂miss(x). The KS-test is defined as

D = supx|F̂hit(x)− F̂miss(x)|.

Under the null hypothesis, the DE evidence R has no association with
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the pathway. Thus, the two empirical distributions F̂hit(x) and F̂miss(x)
should be very similar and the KS-statistics D should be close to 0.
Asymptotic theorem can show that the null distribution of D follows a
distribution of brownian bridge when G and P is large enough. In prac-
tice, the exact null distribution and p-value assessment can be calculated
(available in R).

The KS-test can be treated from another angle. Consider the or-

dered gene list from 1 up to J. Denote by Bhit(P, J) =
∑

j≤J 1{gj∈P}

P and

Bmiss(P, J) =
∑

j≤J 1{gj /∈P}

G−P . We can easily show that

D = max1≤J≤GB(J) = max1≤J≤G|Bhit(P, J)−Bmiss(P, J)| (10.1)

Note that the new formulation in (10.1) shows that KS-test is invariant
under any monotone transformation of R = {r1, · · · , rG}. In other words,
the test result is identical no matter p-values or t-statistics are used and
only the rank by DE evidence matters. We also note that B(0) = B(G) =
0 and under null hypothesis, D again should be close to 0.

Example: Consider DE analysis result of 10 genes. In the ordered DE
gene list, four genes Lhit = (1, 2, 3, 5) are inside a specific pathway and
six genes Lmiss = (4, 6, 7, 8, 9, 10) are outside the pathway. (?? Draw
F̂hit(x), F̂miss(x) and B(J)??).

10.4 Gene set enrichment analysis

The KS-test described above has two major weaknesses. Firstly, the test
is performed for each gene independently. To alleviate this assumption,
we may adopt only the KS-statistic and perform permutation analysis to
generate null distribution and assess the statistical significance. Secondly,
only gene order is accounted for in the KS-test and the strength of DE
evidence (i.e. association scores R) is ignored. Gene set enrichment
analysis (GSEA) was proposed (Subramanian et al., 2005) to alleviate
these two weaknesses and have been a popular tool for pathway analysis.
Below we describe detailed procedures of GSEA.

Input data for GSEA:

1. Expression data with G genes and S samples, and a phenotype of
interest.
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2. Designate a ranking procedure (e.g. from any DE gene analysis
such as SAM or LIMMA) to produce an ordered gene list L =
{g1, · · · , gG} and the corresponding association score of each gene
R = {r1, · · · , rG}. The association score of each gene with the
phenotyp of interest can be obtained from Pearson correlation or
p-values of two-sample test (e.g. t-test) or linear regression. In
GSEA, correlation is the default.

3. Independently obtained or derived gene sets P1,P2, · · · ,PM with
p1, · · · , pM genes (e.g. from Gene Ontology or KEGG).

Enrichment score ES(Pi)

1. Evaluate the fraction of genes in Pi (“hits”) weighted by their asso-
ciation scores and the fraction of genes not in Pi (“misses”) present
up to a given position J in L:

Thit(Pi, J) =
∑

gj∈Pi,j≤J

|rj |
N(Pi)

, whereN(Pi) =
∑

gj∈Pi

|rj |

Tmiss(Pi, J) =
∑

gj /∈Pi,j≤J

1

G− pi

Finally, the ES score is defined as ES(Pi) = maxJ B(Pi, J) =
maxJ Thit(Pi, J) − Tmiss(Pi, J). We note that similar to KS-test,
Thit(Pi, 0) = Tmiss(Pi, 0) = 0, Thit(Pi, G) = Tmiss(Pi, G) = 1 and
B(Pi, 0) = B(Pi, G) = 0 (a property similar to Brownian bridge).
In fact, when the weights rg are all assigned to one, this enrichment
score equals KS-test in (10.1).

Finally, the statistical significance and multiple hypothesis testing are
assessed via permutation analysis. In the below section, we will discuss
issues of permutation in pathway analysis.

10.5 hypothesis setting and permutation anal-
ysis

According to Tian et al. (2005), two hypotheses Q1 and Q2 are considered
in the literature for pathway analysis (cited from the orginial paper).
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1. Hypothesis Q1: The genes in a gene set show the same pattern
of associations with the phenotype compared with the rest of the
genes.

2. Hypothesis Q2: The gene set does not contain any genes whose
expression levels are associated with the phenotype of interest.

In general, permuting genes in the analysis is aimed to pursue Q1 and
permuting samples is for Q2. In the former case, the association scores
are deterministic and the gene set structure is random and vice versa for
the latter case. (?? go through the appendix in Tian et al., 2005??)

10.6 Conclusioin

Pathway analysis is a powerful tool to link new findings from the analy-
sis with existing biological knowledge. It provides better interpretation
of the data and is useful to generate new biological hypothesis. Many
methods have been developed (e.g. GSA, random set method etc). Nam
and Kim (2008) provides a comprehensive review of methods (Table 1),
software packages (Table 2) and pathway databases (Table 3). Other
user-freindly packages also exist, such as Ingenuity Pathway Analysis
(IPA), (DAVID) from NIH and MetaCore.
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